
MATLAB® Compiler SDK™

Getting Started Guide

R2016a



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Compiler SDK™ Getting Started Guide
© COPYRIGHT 2012–2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

March 2015 Online only New for Version 6.0 (Release R2015a)
September 2015 Online only Revised for Version 6.1 (Release 2015b)
October 2015 Online only Rereleased for Version 6.0.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 6.2 (Release 2016a)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents


iii

Contents

Overview of MATLAB Compiler SDK
1

MATLAB Compiler SDK Product Description . . . . . . . . . . . . 1-2
Key Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Appropriate Tasks for MATLAB Compiler Products . . . . . . . 1-3

Deployment Product Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5

Examples
2

Create a C/C++ Application with MATLAB Code . . . . . . . . . . 2-2

Create a .NET Application with MATLAB Code . . . . . . . . . . . 2-7

Create a Java Application with MATLAB Code . . . . . . . . . . 2-14

Create a Python Application with MATLAB Code . . . . . . . . 2-19

Using MATLAB Production Server
3

Create a Deployable Archive for MATLAB Production
Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

Create a C# Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6



iv Contents

Create a Java Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10

Create a C++ Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14

Create a Python Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20



1

Overview of MATLAB Compiler SDK

• “MATLAB Compiler SDK Product Description” on page 1-2
• “Appropriate Tasks for MATLAB Compiler Products” on page 1-3
• “Deployment Product Terms” on page 1-5



1 Overview of MATLAB Compiler SDK

1-2

MATLAB Compiler SDK Product Description
Build software components from MATLAB programs

MATLAB® Compiler SDK™ extends the functionality of MATLAB Compiler™ to let
you build C/C++ shared libraries, Microsoft® .NET assemblies, and Java® classes from
MATLAB programs. These components can be integrated with custom applications and
then deployed to desktop, web, and enterprise systems.

MATLAB Compiler SDK includes a development version of MATLAB Production
Server™ for testing and debugging application code and Excel® add-ins before deploying
them to web applications and enterprise systems.

Applications created using software components from MATLAB Compiler SDK can
be shared royalty-free with users who do not need MATLAB. These applications use
the MATLAB Runtime, a set of shared libraries that enables the execution of compiled
MATLAB applications or components.

Key Features

• Packaging of your MATLAB programs as C/C++ shared libraries, Microsoft .NET
assemblies, and Java classes

• Royalty-free distribution of software components to users who do not need MATLAB
• Development and test framework for MATLAB Production Server for integration with

web and enterprise systems
• Encryption of MATLAB code to protect your intellectual property



 Appropriate Tasks for MATLAB Compiler Products

1-3

Appropriate Tasks for MATLAB Compiler Products

MATLAB Compiler generates standalone applications and Excel add-ins. MATLAB
Compiler SDK generates C/C++ shared libraries, deployable archives for use with
MATLAB Production Server, Java packages, .NET assemblies, and COM components.

While MATLAB Compiler and MATLAB Compiler SDK let you run your MATLAB
application outside the MATLAB environment, it is not appropriate for all external tasks
you may want to perform. Some tasks require either the MATLAB Coder™ product or
MATLAB external interfaces. Use the following table to determine if MATLAB Compiler
or MATLAB Compiler SDK is appropriate to your needs.

MATLAB Compiler Task Matrix

Task MATLAB
Compiler

and MATLAB
Compiler SDK

MATLAB Coder MATLAB External
Interfaces

Package MATLAB applications for
deployment to users who do not
have MATLAB

■    

Package MATLAB applications for
deployment to MATLAB Production
Server

■    

Build non-MATLAB applications
that include MATLAB functions

■    

Generate readable, efficient, and
embeddable C code from MATLAB
code

  ■  

Generate MEX functions from
MATLAB code for rapid prototyping
and verification of generated C code
within MATLAB

  ■  

Integrate MATLAB code into
Simulink®

  ■  

Speed up fixed-point MATLAB code   ■  



1 Overview of MATLAB Compiler SDK

1-4

Task MATLAB
Compiler

and MATLAB
Compiler SDK

MATLAB Coder MATLAB External
Interfaces

Generate hardware description
language (HDL) from MATLAB code

  ■  

Integrate custom C code into
MATLAB with MEX files

    ■

Call MATLAB from C and Fortran
programs

    ■

For information on MATLAB Coder see “MATLAB Coder”.

For information on MATLAB external interfaces see “External Code Integration”.



 Deployment Product Terms

1-5

Deployment Product Terms

A

Add-in — A Microsoft Excel add-in is an executable piece of code that can be actively
integrated into a Microsoft Excel application. Add-ins are front-ends for COM
components, usually written in some form of Microsoft Visual Basic®.

Application program interface (API) — A set of classes, methods, and interfaces that
is used to develop software applications. Typically an API is used to provide access to
specific functionality. See MWArray.

Application — An end user-system into which a deployed functions or solution is
ultimately integrated. Typically, the end goal for the deployment customer is integration
of a deployed MATLAB function into a larger enterprise environment application.
The deployment products prepare the MATLAB function for integration by wrapping
MATLAB code with enterprise-compatible source code, such as C, C++, C# (.NET), F#,
and Java code.

Assembly — An executable bundle of code, especially in .NET.

B

Binary — See Executable.

Boxed Types — Data types used to wrap opaque C structures.

Build — See Compile.

C

Class — A user-defined type used in C++, C#, and Java, among other object-oriented
languages, that is a prototype for an object in an object-oriented language. It is analogous
to a derived type in a procedural language. A class is a set of objects which share a
common structure and behavior. Classes relate in a class hierarchy. One class is a
specialization (a subclass) of another (one of its superclasses) or comprises other classes.
Some classes use other classes in a client-server relationship. Abstract classes have no
members, and concrete classes have one or more members. Differs from a MATLAB class

Compile — In MATLAB Compiler and MATLAB Compiler SDK, to compile MATLAB
code involves generating a binary that wraps around MATLAB code, enabling it to
execute in various computing environments. For example, when MATLAB code is



1 Overview of MATLAB Compiler SDK

1-6

compiled into a Java package, a Java wrapper provides Java code that enables the
MATLAB code to execute in a Java environment.

COM component — In MATLAB Compiler, the executable back-end code behind a
Microsoft Excel add-in. In MATLAB Compiler SDK, an executable component, to be
integrated with Microsoft COM applications.

Console application — Any application that is executed from a system command prompt
window.

D

Data Marshaling — Data conversion, usually from one type to another. Unless a
MATLAB deployment customer is using type-safe interfaces, data marshaling—as from
mathematical data types to MathWorks® data types such as represented by the MWArray
API—must be performed manually, often at great cost.

Deploy — The act of integrating MATLAB code into a larger-scale computing
environment, usually to an enterprise application, and often to end users.

Deployable archive — The deployable archive is embedded by default in each binary
generated by MATLAB Compiler or MATLAB Compiler SDK. It houses the deployable
package. All MATLAB-based content in the deployable archive uses the Advanced
Encryption Standard (AES) cryptosystem. See “Additional Details”.

DLL — Dynamic link library. Microsoft's implementation of the shared library concept
for Windows®. Using DLLs is much preferred over the previous technology of static (or
non-dynamic) libraries, which had to be manually linked and updated.

E

Empties — Arrays of zero (0) dimensions.

Executable — An executable bundle of code, made up of binary bits (zeros and ones) and
sometimes called a binary.

F

Fields — For this definition in the context of MATLAB Data Structures, see Structs.

Fields and Properties — In the context of .NET, Fields are specialized classes used
to hold data. Properties allow users to access class variables as if they were accessing
member fields directly, while actually implementing that access through a class method.



 Deployment Product Terms

1-7

I

Integration — Combining deployed MATLAB code's functionality with functionality
that currently exists in an enterprise application. For example, a customer creates a
mathematical model to forecast trends in certain commodities markets. In order to use
this model in a larger-scale financial application (one written with the Microsoft .NET
Framework, for instance) the deployed financial model must be integrated with existing
C# applications, run in the .NET enterprise environment.

Instance — For the definition of this term in context of MATLAB Production Server
software, see MATLAB Production Server Server Instance.

J

JAR — Java archive. In computing software, a JAR file (or Java ARchive) aggregates
many files into one. Software developers use JARs to distribute Java applications or
libraries, in the form of classes and associated metadata and resources (text, images,
etc.). Computer users can create or extract JAR files using the jar command that comes
with a Java Development Kit (JDK).

Java-MATLAB Interface — Known as the JMI Interface, this is the Java interface built
into MATLAB software.

JDK — The Java Development Kit is a free Oracle® product which provides the
environment required for programming in Java.

JMI Interface — see Java-MATLAB Interface.

JRE — Java Run-Time Environment is the part of the Java Development Kit (JDK)
required to run Java programs. It comprises the Java Virtual Machine, the Java platform
core classes, and supporting files. It does not include the compiler, debugger, or other
tools present in the JDK™. The JRE™ is the smallest set of executables and files that
constitute the standard Java platform.

M

Magic Square — A square array of integers arranged so that their sum is the same when
added vertically, horizontally, or diagonally.

MATLAB Runtime — An execution engine made up of the same shared libraries.
MATLAB uses these libraries to enable the execution of MATLAB files on systems
without an installed version of MATLAB.



1 Overview of MATLAB Compiler SDK

1-8

MATLAB Runtime singleton — See Shared MATLAB Runtime instance.

MATLAB Runtime workers — A MATLAB Runtime session. Using MATLAB Production
Server software, you have the option of specifying more than one MATLAB Runtime
session, using the --num-workers options in the server configurations file.

MATLAB Production Server Client — In the MATLAB Production Server software,
clients are applications written in a language supported by MATLAB Production Server
that call deployed functions hosted on a server.

MATLAB Production Server Configuration — An instance of the MATLAB Production
Server containing at least one server and one client. Each configuration of the software
usually contains a unique set of values in the server configuration file, main_config.

MATLAB Production Server Server Instance — A logical server configuration created
using the mps-new command in MATLAB Production Server software.

MATLAB Production Server Software — Product for server/client deployment of
MATLAB programs within your production systems, enabling you to incorporate
numerical analytics in enterprise applications. When you use this software, web,
database, and enterprise applications connect to MATLAB programs running on
MATLAB Production Server via a lightweight client library, isolating the MATLAB
programs from your production system. MATLAB Production Server software consists of
one or more servers and clients.

Marshaling — See Data Marshaling.

mbuild — MATLAB Compiler SDK command that compiles and links C and C++ source
files into standalone applications or shared libraries. For more information, see the
mbuild function reference page.

mcc — The MATLAB command that invokes the compiler. It is the command-line
equivalent of using the compiler apps.

Method Attribute — In the context of .NET, a mechanism used to specify declarative
information to a .NET class. For example, in the context of client programming with
MATLAB Production Server software, you specify method attributes to define MATLAB
structures for input and output processing.

mxArray interface — The MATLAB data type containing all MATLAB representations of
standard mathematical data types.



 Deployment Product Terms

1-9

MWArray interface — A proxy to mxArray. An application program interface (API) for
exchanging data between your application and MATLAB. Using MWArray, you marshal
data from traditional mathematical types to a form that can be processed and understood
by MATLAB data type mxArray. There are different implementations of the MWArray
proxy for each application programming language.

P

Package — The act of bundling the deployed MATLAB code, along with the MATLAB
Runtime and other files, into an installer that can be distributed to others. The compiler
apps place the installer in the for_redistribution subfolder. In addition to the
installer, the compiler apps generate a number of lose artifacts that can be used for
testing or building a custom installer.

PID File — See Process Identification File (PID File).

Pool — A pool of threads, in the context of server management using MATLAB
Production Server software. Servers created with the software do not allocate a unique
thread to each client connection. Rather, when data is available on a connection, the
required processing is scheduled on a pool, or group, of available threads. The server
configuration file option --num-threads sets the size of that pool (the number of
available request-processing threads) in the master server process.

Process Identification File (PID File) — A file that documents informational and error
messages relating to a running server instance of MATLAB Production Server software.

Program — A bundle of code that is executed to achieve a purpose. Programs usually
are written to automate repetitive operations through computer processing. Enterprise
system applications usually consist of hundreds or even thousands of smaller programs.

Properties — For this definition in the context of .NET, see Fields and Properties.

Proxy — A software design pattern typically using a class, which functions as an
interface to something else. For example, MWArray is a proxy for programmers who need
to access the underlying type mxArray.

S

Server Instance — See MATLAB Production Server Server Instance.

Shared Library — Groups of files that reside in one space on disk or memory for fast
loading into Windows applications. Dynamic-link libraries (DLLs) are Microsoft's
implementation of the shared library concept for Microsoft Windows.



1 Overview of MATLAB Compiler SDK

1-10

Shared MATLAB Runtime instance — When using MATLAB Compiler SDK, you can
create a shared MATLAB Runtime instance, also known as a singleton. When you invoke
MATLAB Compiler with the -S option through the compiler (using either mcc or a
compiler app), a single MATLAB Runtime instance is created for each COM component
or Java package in an application. You reuse this instance by sharing it among all
subsequent class instances. Such sharing results in more efficient memory usage and
eliminates the MATLAB Runtime startup cost in each subsequent class instantiation.
All class instances share a single MATLAB workspace and share global variables in the
deployed MATLAB files. MATLAB Compiler SDK creates singletons by default for .NET
assemblies. MATLAB Compiler creates singletons by default for the COM components
used by the Excel add-ins.

State — The present condition of MATLAB, or the MATLAB Runtime. MATLAB
functions often carry state in the form of variable values. The MATLAB workspace itself
also maintains information about global variables and path settings. When deploying
functions that carry state, you must often take additional steps to ensure state retention
when deploying applications that use such functions.

Structs — MATLAB Structures. Structs are MATLAB arrays with elements that you
access using textual field designators. Fields are data containers that store data of a
specific MATLAB type.

System Compiler — A key part of Interactive Development Environments (IDEs) such as
Microsoft Visual Studio®.

T

Thread — A portion of a program that can run independently of and concurrently with
other portions of the program. See pool for additional information on managing the
number of processing threads available to a server instance.

Type-safe interface — An API that minimizes explicit type conversions by hiding the
MWArray type from the calling application.

W

Web Application Archive (WAR) —In computing, a Web Application Archive is a JAR file
used to distribute a collection of JavaServer pages, servlets, Java classes, XML files, tag
libraries, and static web pages that together constitute a web application.

Webfigure — A MathWorks representation of a MATLAB figure, rendered on the web.
Using the WebFigures feature, you display MATLAB figures on a website for graphical



 Deployment Product Terms

1-11

manipulation by end users. This enables them to use their graphical applications from
anywhere on the web, without the need to download MATLAB or other tools that can
consume costly resources.

Windows Communication Foundation (WCF) — The Windows Communication
Foundation™ is an application programming interface in the .NET Framework for
building connected, service-oriented, web-centric applications. WCF is designed in
accordance with service oriented architecture principles to support distributed computing
where services are consumed by client applications.





2

Examples

• “Create a C/C++ Application with MATLAB Code” on page 2-2
• “Create a .NET Application with MATLAB Code” on page 2-7
• “Create a Java Application with MATLAB Code” on page 2-14
• “Create a Python Application with MATLAB Code” on page 2-19



2 Examples

2-2

Create a C/C++ Application with MATLAB Code

This example shows how to create a C/C++ shared library using a MATLAB function.
You then integrate it into an application.

1 In MATLAB, examine the MATLAB code that you want to deploy as a shared
library.

a Open addmatrix.m.

function a = addmatrix(a1, a2)

a = a1 + a2;

b At the MATLAB command prompt, enter addmatrix(1,2).

The output appears as follows:

ans =

     3

2 Open the Library Compiler app.

a On the toolstrip, select the Apps tab.
b Click the arrow at the far right of the tab.
c Click Library Compilers.



 Create a C/C++ Application with MATLAB Code

2-3

3 In the Application Type section of the toolstrip, select C++ Shared Library from
the list.

4 Specify the MATLAB functions you want to deploy.

a In the Exported Functions section of the toolstrip, click the plus button.
b In the file explorer that opens, locate and select the addmatrix.m file.

addmatrix.m is located in matlabroot\extern\examples\compilersdk.
c Click Open to select the file and close the file explorer.

5 In the Packaging Options section of the toolstrip, verify that the Runtime
downloaded from web check box is selected.



2 Examples

2-4

This option creates an application installer that automatically downloads the
MATLAB Runtime and installs it along with the deployed shared library.

6 Click Package.

The Package window opens while the library is being generated.

7 Select the Open output folder when process completes check box.
8 Click Close on the Package window.
9 Verify the contents of the generated output:

• for_redistribution — A folder containing the installer to distribute the
standalone application

• for_testing — A folder containing the raw files generated by the compiler
• for_redistribution_files_only — A folder containing only the files needed

to redistribute the application
• PackagingLog.txt — A log file generated by the compiler.

10 Open the for_redistribution folder.
11 Run the installer.
12 In the folder containing the generated shared libraries, create a new file called

addmatrix.cpp.
13 Using a text editor, open addmatrix.cpp.
14 Copy the following into the file.

#include "addmatrix.h"



 Create a C/C++ Application with MATLAB Code

2-5

int run_main(int argc, char **argv)

{

  if (!mclInitializeApplication(NULL,0)) 

    {

      std::cerr << "could not initialize the application properly"

                << std::endl;

       return -1;

    }

  if( !addmatrixInitialize() )

    {

      std::cerr << "could not initialize the library properly"

                << std::endl;

      return -1;

    }

 

  try

    {

      // Create input data

      double data[] = {1,2,3,4,5,6,7,8,9};

      mwArray in1(3, 3, mxDOUBLE_CLASS, mxREAL);

      mwArray in2(3, 3, mxDOUBLE_CLASS, mxREAL);

      in1.SetData(data, 9);

      in2.SetData(data, 9);

    

      // Create output array

      mwArray out;

            

      // Call the library function

      addmatrix(1, out, in1, in2);

    

      std::cout << "The value of added matrix is:" << std::endl;

      std::cout << out << std::endl;

    }

  catch (const mwException& e)

    {

      std::cerr << e.what() << std::endl;

      return -2;

    }

  catch (...)

    {

      std::cerr << "Unexpected error thrown" << std::endl;

      return -3;

    }



2 Examples

2-6

  addmatrixTerminate();

  mclTerminateApplication();

  return 0;

}

int main()

{

  mclmcrInitialize();

  return mclRunMain((mclMainFcnType)run_main,0,NULL);

}

15 Use mbuild to compile and link the application.

mbuild addmatrix.cpp addmatrix.lib

16 From the system's command prompt, run the application.

addmatrix

The value of added matrix is:

     2     8    14

     4    10    16

     6    12    18



 Create a .NET Application with MATLAB Code

2-7

Create a .NET Application with MATLAB Code

This example shows how to transform a MATLAB function into a .NET assembly
and integrate it into an application. The example compiles a MATLAB function,
makesquare, which computes a magic square, into a .NET assembly named
MagicSquareComp, which contains the MLTestClass class and other files needed to
deploy your application.

1 In MATLAB, create the function that you want to deploy as a shared library.

This example uses the sample function, called makesquare.m, included in
the matlabroot\toolbox\dotnetbuilder\Examples\VSVersion\NET
\MagicSquareExample\MagicSquareComp folder, where matlabroot represents
the name of your MATLAB installation folder.

function y = makesquare(x)

y = magic(x);

Run the example in MATLAB.

makesquare(5)

17241815235714164613202210121921311182529

2 Open the Library Compiler app.

a On the toolstrip, select the Apps tab.
b Click the arrow at the far right of the tab to open the apps gallery.
c Click Library Compiler.

Note:  You can also call the libraryCompiler command.



2 Examples

2-8

3 In the Application Type section of the toolstrip, select .NET Assembly from the
list.

Note: If the Application Type section of the toolstrip is collapsed, you can expand it
by clicking the down arrow.



 Create a .NET Application with MATLAB Code

2-9

4 Specify the MATLAB functions that you want to deploy.

a In the Exported Functions section of the toolstrip, click the plus button.
b In the file explorer that opens, locate and select the makesquare.m file.
c Click Open to select the file and close the file explorer.

The Library Compiler app adds makesquare.m to the list of files and a minus
button appears under the plus button. The Library Compiler app uses the name
of the file as the name of the deployment project file (.prj), shown in the title
bar, and as the name of the assembly, shown in the first field of the Application
Information area. The project file saves all of the deployment settings so that
you can re-open the project.



2 Examples

2-10

5 In the Packaging Options section of the toolstrip, verify that the Runtime
downloaded from web check box is selected.

This option creates an application installer that automatically downloads the
MATLAB Runtime and installs it along with the deployed add-in.



 Create a .NET Application with MATLAB Code

2-11

6 In the top field of Application Information, replace makesquare with
MagicSquareComp.

7 In the Class Name column of the class browser, replace Class1 with MLTestClass.
8 Click Package.

The Package window opens while the library is being generated. Select the Open
output folder when process completes check box. The packaging process
generates a self-extracting file that automatically registers the DLL and unpacks all
deployable deliverables.

9 When the deployment process is complete, a file explorer opens and displays the
generated output.

It should contain:

• for_redistribution — A folder containing the installer to distribute the
generated assembly

• for_testing — A folder containing the raw files generated by the compiler
• for_redistribution_files_only — A folder containing only the files needed

to redistribute the assembly
• PackagingLog.txt — A log file generated by the compiler

10 Click Close on the Package window.
11 Open the for_redistribution folder.
12 Run the installer.
13 Open Microsoft Visual Studio



2 Examples

2-12

14 Create a new project.

For this example create a C# Console Application called MainApp.
15 Create a reference to your assembly.

The assembly is located in the application folder created when you installed the
component. For this example, select makeSqr.dll.

16 Create a reference to the MWArray API.

The API is located in MATLABROOT\toolbox\dotnetbuilder\bin
\arch\version\MWArray.dll.

17 Paste the following code into your main file.

using System; 

using System.Collections.Generic; 

using System.Text; 

using MagicSquareComp; 

using MathWorks.MATLAB.NET.Arrays; 

using MathWorks.MATLAB.NET.Utility; 

namespace mainApp 

{ 

    class Program 

    { 

        static void Main(string[] args) 

        { 

            MLTestClass obj = null; 

            MWNumericArray input = null; 

            MWNumericArray output = null; 

            MWArray[] result = null; 

            try 

            { 

                obj = new MLTestClass(); 

                input = 5; 

                result = obj.makesquare(1, input); 

                output = (MWNumericArray)result[0]; 

                Console.WriteLine(output); 

            } 

            catch 



 Create a .NET Application with MATLAB Code

2-13

            { 

                throw; 

            } 

        } 

    } 

}

18 After you finish writing your code, you build and run it with Microsoft Visual Studio.



2 Examples

2-14

Create a Java Application with MATLAB Code

This example shows how to create a Java package using a MATLAB function. You can
then pass the generated package to the developer, who is responsible for integrating it
into an application.

To compile a Java package from MATLAB code:

1 In MATLAB, examine the MATLAB code that want to deploy as a Java package.

a Open makesqr.m.

function y = makesqr(x)

y = magic(x);

b At the MATLAB command prompt, enter makesqr(5).

The output appears as follows:

ans =

    17    24     1     8    15

    23     5     7    14    16

     4     6    13    20    22

    10    12    19    21     3

    11    18    25     2     9

2 Open the Library Compiler app.

a On the toolstrip, select the Apps tab.
b Click the arrow at the far right of the tab to open the apps gallery.
c Click Library Compiler.



 Create a Java Application with MATLAB Code

2-15

3 In the Application Type section of the toolstrip, select Java Package from the list.
4 Specify the MATLAB functions you want to deploy.

a In the Exported Functions section of the toolstrip, click the plus button.
b In the file explorer that opens, locate and select the makesqr.m file.

makesqr.m is located in matlabroot\toolbox\javabuilder\Examples
\MagicSqaureExample\MagicDemoComp.

c Click Open to select the file, and close the file explorer.



2 Examples

2-16

makesqr.m is added to the list of exported files and a minus button appears
under the plus button. In addition, makesqr is set as:

• the library name
• the package name

5 Verify that the function defined in makesqr.m is mapped into Class1.

6 In the Packaging Options section of the toolstrip, verify that the Runtime
downloaded from web check box is selected.

This option creates an application installer that automatically downloads the
MATLAB Runtime and installs it along with the deployed package.

7 Click Package.
8 Select the Open output folder when process completes check box.
9 Verify that the generated output contains:

• for_redistribution — A folder containing the installer to distribute the
package

• for_testing — A folder containing the raw generated files to create the
installer

• for_redistribution_files_only — A folder containing only the files needed
to redistribute the package

• PackagingLog.txt — A log file generated by the compiler
10 Click Close on the Package window.
11 Open the for_redistribution folder.
12 Run the installer.
13 In the folder containing the generated JAR files, create a new file called

getmagic.java.
14 Using a text editor, open getmagic.java.
15 Paste the following code into the file.

import com.mathworks.toolbox.javabuilder.*;



 Create a Java Application with MATLAB Code

2-17

import makesqr.*;

class getmagic

{

   public static void main(String[] args)

   {

      MWNumericArray n = null;

      Object[] result = null;

      Class1 theMagic = null;

      if (args.length == 0)

      {

        System.out.println("Error: must input a positive integer");

        return;

      }

      try

      {

         n = new MWNumericArray(Double.valueOf(args[0]),

                                      MWClassID.DOUBLE);

         theMagic = new Class1();

         result = theMagic.makesqr(1, n);

         System.out.println(result[0]);

      }

      catch (Exception e)

      {

         System.out.println("Exception: " + e.toString());

      }

      finally

      {

         MWArray.disposeArray(n);

         MWArray.disposeArray(result);

         theMagic.dispose();

      }

   }

}

16 Compile the Java application using javac.

javac -classpath "mcrroot\toolbox\javabuilder\jar\javabuilder.jar";.\makesqr.jar .\getmagic.java



2 Examples

2-18

Note: On UNIX® platforms, use colon (:) as the class path delimiter instead of
semicolon (;).

mcrroot is the path to where the MATLAB Runtime is installed on your system. If
you have MATLAB installed on your system instead, you can use the path to your
MATLAB installation.

17 From the system's command prompt, run the application.

java -classpath .;"c:\Program Files\MATLAB\MATLAB Compiler Runtime\v82\toolbox\javabuilder\jar\javabuilder.jar";.\makesqr.jar getmagic 5

    17    24     1     8    15

    23     5     7    14    16

     4     6    13    20    22

    10    12    19    21     3

    11    18    25     2     9

You must be sure to place a dot (.) in the first position of the class path. If it not, you
get a message stating that Java cannot load the class.

Note: On UNIX platforms, use colon (:) as the class path delimiter instead of
semicolon (;).

mcrroot is the path to where the MATLAB Runtime is installed on your system. If
you have MATLAB installed on your system instead, you can use the path to your
MATLAB installation.



 Create a Python Application with MATLAB Code

2-19

Create a Python Application with MATLAB Code

This example shows how to create a Python® package using a MATLAB function. You can
then pass the generated package to the developer, who is responsible for integrating it
into an application.

To compile a Python package from MATLAB code:

1 In MATLAB, examine the MATLAB code that you want to deploy as a Python
package.

a Open makesqr.m.

function y = makesqr(x)

y = magic(x);

b At the MATLAB command prompt, enter makesqr(5).

The output appears as follows:

ans =

    17    24     1     8    15

    23     5     7    14    16

     4     6    13    20    22

    10    12    19    21     3

    11    18    25     2     9

2 Open the Library Compiler app.

a On the toolstrip, select the Apps tab.
b Click the arrow at the far right of the tab to open the apps gallery.
c Click Library Compiler.



2 Examples

2-20

3 In the Application Type section of the toolstrip, select Python Package from the
list.

4 Specify the MATLAB functions you want to deploy.

a In the Exported Functions section of the toolstrip, click the plus button.
b In the file explorer that opens, locate and select the makesqr.m file.

makesqr.m is located in matlabroot\toolbox\javabuilder\Examples
\MagicSqaureExample\MagicDemoComp.

c Click Open to select the file, and close the file explorer.

makesqr.m is added to the list of exported files and a minus button appears
under the plus button. In addition, makesqr is set as the package name.

5 In the Packaging Options section of the toolstrip, verify that the Runtime
downloaded from web check box is selected.



 Create a Python Application with MATLAB Code

2-21

This option creates an application installer that automatically downloads the
MATLAB Runtime and installs it along with the deployed package.

6 Click Package.
7 Select the Open output folder when process completes check box.
8 Verify that the generated output contains:

• for_redistribution — A folder containing the installer to distribute the
package

• for_testing — A folder containing the raw generated files to create the
installer

• for_redistribution_files_only — A folder containing only the files needed
to redistribute the package

• PackagingLog.txt — A log file generated by the compiler
9 Click Close on the Package window.
10 Open a command prompt in the for_redistribution_files_only folder.
11 Run the set up script to install the package.

python setup.py install

12 Create a new file called getmagic.py.
13 Using a text editor, open getmagic.py.
14 Paste the following code into the file.

import makesqr

import matlab

myMagic = makesqr.initialize()

myMagic.makesqr(5)

myMagic.terminate()

15 From the system's command prompt, run the application.

python getmagic.py

matlab.double([[17.0,24.0,1.0,8.0,15.0],

[23.0,5.0,7.0,14.0,16.0],[4.0,6.0,13.0,20.0,22.0],

[10.0,12.0,19.0,21.0,3.0],[11.0,18.0,25.0,2.0,9.0]])



2 Examples

2-22

Note: On Mac OS X you must use the mwpython script. The mwpython script is
located in the matlabroot/bin folder. matlabroot is the location of your MATLAB
installation. For example:

mwpython getmagic.py

See Also
mwpython



3

Using MATLAB Production Server

• “Create a Deployable Archive for MATLAB Production Server” on page 3-2
• “Create a C# Client” on page 3-6
• “Create a Java Client” on page 3-10
• “Create a C++ Client” on page 3-14
• “Create a Python Client” on page 3-20



3 Using MATLAB Production Server

3-2

Create a Deployable Archive for MATLAB Production Server

This example shows how to create a deployable archive for MATLAB Production Server
using a MATLAB function. You can then hand the generated archive to a system
administrator who will deploy it into MATLAB Production Server.

To create a deployable archive:

1 In MATLAB, examine the MATLAB code that you want to deploy.

a Open addmatrix.m.

function a = addmatrix(a1, a2)

a = a1 + a2;

b At the MATLAB command prompt, enter addmatrix(1,2).

The output appears as follows:

ans =

     3

2 Open the Production Server Compiler app.

a On the toolstrip, select the Apps tab.
b Click the arrow on the far right of the tab to open the apps gallery.
c Click Production Server Compiler.



 Create a Deployable Archive for MATLAB Production Server

3-3

3 In the Application Type section of the toolstrip, select Deployable Archive from
the list.

Note: If the Application Type section of the toolstrip is collapsed, you can expand it
by clicking the down arrow .

4 Specify the MATLAB functions you want to deploy.

a In the Exported Functions section of the toolstrip, click the plus button.

Note: If the Exported Functions section of the toolstrip is collapsed, you can
expand it by clicking the down arrow.

b Using the file explorer, locate and select the addmatrix.m file.

addmatrix.m is located in matlabroot\extern\examples\compiler.



3 Using MATLAB Production Server

3-4

c Click Open to select the file and close the file explorer.

addmatrix.m is added to the field. A minus button will appear below the plus
button.

5 Explore the main body of the project window.

The project window is divided into the following areas:

• Archive Information — Editable information about the deployed archive.
• Files required for your archive to run — Additional files required by the

archive. These files will be included in the generated archive. See “Manage
Required Files in Compiler Project”.

• Files packaged with the archive — Files that are packaged with your archive.
These files include:

• readme.txt

• .ctf file

See “Specify Files to Install with Application”.
6 Click Package.

The Package window opens while the library is being generated.

7 Select the Open output folder when process completes check box.



 Create a Deployable Archive for MATLAB Production Server

3-5

When the deployment process is complete, a file explorer opens and displays the
generated output.

8 Verify the contents of the generated output:

• for_redistribution — A folder containing the installer to redistribute the
archive to the system administrator responsible for the MATLAB Production
Server

• for_testing — A folder containing the raw files generated by the compiler
• PackagingLog.txt — A log file generated by the compiler.

9 Click Close on the Package window.

To lean more about MATLAB Production Server see “MATLAB Production Server”



3 Using MATLAB Production Server

3-6

Create a C# Client

This example shows how to call a deployed MATLAB function from a C# application
using MATLAB Production Server.

In your C# code, you must:

• Create a Microsoft Visual Studio Project.
• Create a Reference to the Client Run-Time Library.
• Design the .NET interface in C#.
• Write, build, and run the C# application.

This task is typically performed by .NET application programmer. This part of the
tutorial assumes you have Microsoft Visual Studio and .NET installed on your computer.

Create a Microsoft Visual Studio Project

1 Open Microsoft Visual Studio.
2 Click File > New > Project.
3 In the New Project dialog, select the project type and template you want to use.

For example, if you want to create a C# Console Application, select Windows
in the Visual C# branch of the Project Type pane, and select the C# Console
Application template from the Templates pane.

4 Type the name of the project in the Name field (Magic, for example).
5 Click OK. Your Magic source shell is created, typically named Program.cs, by

default.

Create a Reference to the Client Run-Time Library

Create a reference in your MainApp code to the MATLAB Production Server client run-
time library. In Microsoft Visual Studio, perform the following steps:

1 In the Solution Explorer pane within Microsoft Visual Studio (usually on the right
side), select the name of your project, Magic, highlighting it.

2 Right-click Magic and select Add Reference.
3 In the Add Reference dialog box, select the Browse tab. Browse

to the MATLAB Production Server client runtime, installed at



 Create a C# Client

3-7

matlabroot\toolbox\compiler_sdk\mps_client\dotnet. Select
MathWorks.MATLAB.ProductionServer.Client.dll.

4 Click OK. MathWorks.MATLAB.ProductionServer.Client.dll is now
referenced by your Microsoft Visual Studio project.

Design the .NET Interface in C#

In this example, you invoke mymagic.m, hosted by the server, from a .NET client,
through a .NET interface.

To match the MATLAB function mymagic.m, design an interface named Magic.

For example, the interface for the mymagic function:

function m = mymagic(in)

    m = magic(in);

might look like this:

 public interface Magic 

        {

          double[,] mymagic(int in1);

        }

Note the following:

• The .NET interface has the same number of inputs and outputs as the MATLAB
function.

• You are deploying one MATLAB function, therefore you define one
corresponding .NET method in your C# code.

• Both MATLAB function and .NET interface process the same types: input type int
and the output type two-dimensional double.

• You specify the name of your deployable archive (magic, which resides
in your auto_deploy folder) in your URL, when you call CreateProxy
("http://localhost:9910/magic").

Write, Build, and Run the .NET Application

Create a C# interface named Magic in Microsoft Visual Studio by doing the following:

1 Open the Microsoft Visual Studio project, MagicSquare, that you created earlier.
2 In Program.cs tab, paste in the code below.



3 Using MATLAB Production Server

3-8

Note: The URL value ("http://localhost:9910/mymagic_deployed") used to
create the proxy contains three parts:

• the server address (localhost).
• the port number (9910).
• the archive name (mymagic_deployed)

using System;

using System.Net;

using MathWorks.MATLAB.ProductionServer.Client;

namespace Magic 

{

  public class MagicClass 

  {

    

    public interface Magic 

    {

     double[,] mymagic(int in1);

    }

    public static void Main(string[] args)

  {

     MWClient client = new MWHttpClient();

       try

       {

        Magic me = client.CreateProxy<Magic>

                     (new Uri("http://localhost:9910/mymagic_deployed"));

          double[,] result1 = me.mymagic(4);

          print(result1);

       }

       catch (MATLABException ex)

       {

         Console.WriteLine("{0} MATLAB exception caught.", ex);

         Console.WriteLine(ex.StackTrace);

       }

       catch (WebException ex)

       {

         Console.WriteLine("{0} Web exception caught.", ex);

         Console.WriteLine(ex.StackTrace);

       }

       finally

       {

         client.Dispose();

       }

       Console.ReadLine();

   }



 Create a C# Client

3-9

 

   public static void print(double[,] x) 

   {

      int rank = x.Rank;

      int [] dims = new int[rank];

      for (int i = 0; i < rank; i++)

      {

         dims[i] = x.GetLength(i);

      }

      for (int j = 0; j < dims[0]; j++)

      {

         for (int k = 0; k < dims[1]; k++)

         { 

            Console.Write(x[j,k]);

            if (k < (dims[1] - 1))

            {

               Console.Write(",");

            }

         }

         Console.WriteLine();

       }

     }

   }

}

3 Build the application. Click Build > Build Solution.
4 Run the application. Click Debug > Start Without Debugging. The program

returns the following console output:

16,2,3,13

5,11,10,8

9,7,6,12

4,14,15,1 



3 Using MATLAB Production Server

3-10

Create a Java Client

This example shows how to write a MATLAB Production Server client using the Java
client API. In your Java code, you will:

• Define a Java interface that represents the MATLAB function.
• Instantiate a proxy object to communicate with the server.
• Call the deployed function in your Java code.

To create a Java MATLAB Production Server client application:

1 Create a new file called MPSClientExample.java.
2 Using a text editor, open MPSClientExample.java.
3 Add the following import statements to the file:

import java.net.URL;

import java.io.IOException;

import com.mathworks.mps.client.MWClient;

import com.mathworks.mps.client.MWHttpClient;

import com.mathworks.mps.client.MATLABException;

4 Add a Java interface that represents the deployed MATLAB function.

The interface for the addmatrix function

function a = addmatrix(a1, a2)

a = a1 + a2;

looks like this:

interface MATLABAddMatrix {

       double[][] addmatrix(double[][] a1, double[][] a2)

         throws MATLABException, IOException;

   } 

When creating the interface, note the following:

• You can give the interface any valid Java name.
• You must give the method defined by this interface the same name as the

deployed MATLAB function.
• The Java method must support the same inputs and outputs supported by the

MATLAB function, in both type and number. For more information about data



 Create a Java Client

3-11

type conversions and how to handle more complex MATLAB function signatures,
see “Java Client Programming”.

• The Java method must handle MATLAB exceptions and I/O exceptions.
5 Add the following class definition:

public class MPSClientExample

{

}

This class now has a single main method that calls the generated class.
6 Add the main() method to the application.

public static void main(String[] args)

{

} 

7 Add the following code to the top of the main() method:

double[][] a1={{1,2,3},{3,2,1}};

double[][] a2={{4,5,6},{6,5,4}};

These statements initialize the variables used by the application.
8 Instantiate a client object using the MWHttpClient constructor.

MWClient client = new MWHttpClient();

This class establishes an HTTP connection between the application and the server
instance.

9 Call the client object’s createProxy method to create a dynamic proxy.

You must specify the URL of the deployable archive and the name of your interface
class as arguments:

MATLABAddMatrix m = client.createProxy(new URL("http://localhost:9910/addmatrix"),

                                       MATLABAddMatrix.class);

The URL value ("http://localhost:9910/addmatrix") used to create the proxy
contains three parts:

• the server address (localhost).
• the port number (9910).
• the archive name (addmatrix)



3 Using MATLAB Production Server

3-12

For more information about the createProxy method, see the Javadoc included in
the matlabroot/toolbox/compiler_sdk/mps_client folder.

10 Call the deployed MATLAB function in your Java application by calling the public
method of the interface.

  double[][] result = m.addmatrix(a1,a2);

11 Call the client object’s close() method to free system resources.

client.close();

12 Save the Java file.

The completed Java file should resemble the following:
import java.net.URL;

import java.io.IOException;

import com.mathworks.mps.client.MWClient;

import com.mathworks.mps.client.MWHttpClient;

import com.mathworks.mps.client.MATLABException;

interface MATLABAddMatrix 

  {

    double[][] addmatrix(double[][] a1, double[][] a2)

         throws MATLABException, IOException;

  }

public class MPSClientExample {

    

    public static void main(String[] args){

    

        double[][] a1={{1,2,3},{3,2,1}};

        double[][] a2={{4,5,6},{6,5,4}};

        

        MWClient client = new MWHttpClient();

        

        try{

            MATLABAddMatrix m = client.createProxy(new URL("http://localhost:9910/addmatrix"),

                                                MATLABAddMatrix.class);

            double[][] result = m.addmatrix(a1,a2);

            

            // Print the magic square

            printResult(result);

            

        }catch(MATLABException ex){

        

            // This exception represents errors in MATLAB 

               System.out.println(ex);            

        }catch(IOException ex){

        

            // This exception represents network issues. 

               System.out.println(ex);                    

        }finally{

        

            client.close();        

        }

    }



 Create a Java Client

3-13

    

    private static void printResult(double[][] result){

        for(double[] row : result){

            for(double element : row){

                System.out.print(element + " ");

            }

            System.out.println();

        }        

    }

}

13 Compile the Java application, using the javac command or use the build capability
of your Java IDE.

For example, enter the following:
javac -classpath "matlabroot\toolbox\compiler_sdk\mps_client\java\mps_client.jar" MPSClientExample.java

14 Run the application using the java command or your IDE.

For example, enter the following:
java -classpath .;"matlabroot\toolbox\compiler_sdk\mps_client\java\mps_client.jar" MPSClientExample

The application returns the following at the console:

5.0 7.0 9.0

9.0 7.0 5.0



3 Using MATLAB Production Server

3-14

Create a C++ Client

This example shows how to write a MATLAB Production Server client using the C
client API. The client application calls the addmatrix function you compiled in “Create
a Deployable Archive for MATLAB Production Server” and deployed in “Share a
Deployable Archive on the Server Instance”.

Create a C++ MATLAB Production Server client application:

1 Create a file called addmatrix_client.cpp.
2 Using a text editor, open addmatrix_client.cpp.
3 Add the following include statements to the file:

#include <iostream>

#include <mps/client.h>

Note: The header files for the MATLAB Production Server C client API are located
in the matlabroot/toolbox/compiler_sdk/mps_client/c/include/mps
folder. folder.

4 Add the main() method to the application.

int main ( void )

{

} 

5 Initialize the client runtime.

mpsClientRuntime* mpsruntime = mpsInitializeEx(MPS_CLIENT_1_1);

6 Create the client configuration.

mpsClientConfig* config;

mpsStatus status = mpsruntime->createConfig(&config);

7 Create the client context.

mpsClientContext* context;

status = mpsruntime->createContext(&context, config);

8 Create the MATLAB data to input to the function.

double a1[2][3] = {{1,2,3},{3,2,1}};

double a2[2][3] = {{4,5,6},{6,5,4}};

int numIn=2;

mpsArray** inVal = new mpsArray* [numIn];



 Create a C++ Client

3-15

inVal[0] = mpsCreateDoubleMatrix(2,3,mpsREAL);

inVal[1] = mpsCreateDoubleMatrix(2,3,mpsREAL);

double* data1 = (double *)( mpsGetData(inVal[0]) );

double* data2 = (double *)( mpsGetData(inVal[1]) );

for(int i=0; i<2; i++)

{

  for(int j=0; j<3; j++)

  {

    mpsIndex subs[] = { i, j };

    mpsIndex id = mpsCalcSingleSubscript(inVal[0], 2, subs);

    data1[id] = a1[i][j];

    data2[id] = a2[i][j];

  }

}

9 Create the MATLAB data to hold the output.

int numOut = 1;

mpsArray **outVal = new mpsArray* [numOut];

10 Call the deployed MATLAB function.

Specify the following as arguments:

• client context
• URL of the function
• Number of expected outputs
• Pointer to the mpsArray holding the outputs
• Number of inputs
• Pointer to the mpsArray holding the inputs

mpsStatus status = mpsruntime->feval(context,

    "http://localhost:9910/addmatrix/addmatrix",

    numOut, outVal, numIn, (const mpsArray**)inVal);

For more information about the feval function, see the reference material included
in the matlabroot/toolbox/compiler_sdk/mps_client folder.

11 Verify that the function call was successful using an if statement.

if (status==MPS_OK)

{



3 Using MATLAB Production Server

3-16

}

12 Inside the if statement, add code to process the output.

double* out = mpsGetPr(outVal[0]);

for (int i=0; i<2; i++)

{

  for (int j=0; j<3; j++)

  {        

    mpsIndex subs[] = {i, j};

    mpsIndex id = mpsCalcSingleSubscript(outVal[0], 2, subs);

    std::cout << out[id] << "\t";

  }

  std::cout << std::endl;

}

13 Add an else clause to the if statement to process any errors.

else  

{

  mpsErrorInfo error;

  mpsruntime->getLastErrorInfo(context, &error);

  std::cout << "Error: " << error.message << std::endl;

  switch(error.type)

  {

    case MPS_HTTP_ERROR_INFO:

      std::cout << "HTTP: " << error.details.http.responseCode << ": " 

          << error.details.http.responseMessage << std::endl;

    case MPS_MATLAB_ERROR_INFO:

      std::cout << "MATLAB: " << error.details.matlab.identifier 

          << std::endl;

      std::cout << error.details.matlab.message << std::endl;

    case MPS_GENERIC_ERROR_INFO:

      std::cout << "Generic: " << error.details.general.genericErrorMsg 

          << std::endl;

  }

  mpsruntime->destroyLastErrorInfo(&error);

}

14 Free the memory used by the inputs.

for (int i=0; i<numIn; i++)

  mpsDestroyArray(inVal[i]);

delete[] inVal;

15 Free the memory used by the outputs.



 Create a C++ Client

3-17

for (int i=0; i<numOut; i++)

  mpsDestroyArray(outVal[i]);

delete[] outVal;

16 Free the memory used by the client runtime.

mpsruntime->destroyConfig(config);

mpsruntime->destroyContext(context);

mpsTerminate();

17 Save the file.

The completed program should resemble the following:
#include <iostream>

#include <mps/client.h>

int main ( void )

{

  mpsClientRuntime* mpsruntime = mpsInitializeEx(MPS_CLIENT_1_1);

  mpsClientConfig* config;

  mpsStatus status = mpsruntime->createConfig(&config);

  mpsClientContext* context;

  status = mpsruntime->createContext(&context, config);

  double a1[2][3] = {{1,2,3},{3,2,1}};

  double a2[2][3] = {{4,5,6},{6,5,4}};

  int numIn=2;

  mpsArray** inVal = new mpsArray* [numIn];

  inVal[0] = mpsCreateDoubleMatrix(2,3,mpsREAL);

  inVal[1] = mpsCreateDoubleMatrix(2,3,mpsREAL);

  double* data1 = (double *)( mpsGetData(inVal[0]) );

  double* data2 = (double *)( mpsGetData(inVal[1]) );

  for(int i=0; i<2; i++)

  {

    for(int j=0; j<3; j++)

    {

      mpsIndex subs[] = { i, j };

      mpsIndex id = mpsCalcSingleSubscript(inVal[0], 2, subs);

      data1[id] = a1[i][j];

      data2[id] = a2[i][j];

    }

  }

  int numOut = 1;

  mpsArray **outVal = new mpsArray* [numOut];

  status = mpsruntime->feval(context,

               "http://localhost:9910/addmatrix/addmatrix",

               numOut, outVal, numIn, (const mpsArray **)inVal);

  if (status==MPS_OK)

  {

    double* out = mpsGetPr(outVal[0]);

    for (int i=0; i<2; i++)



3 Using MATLAB Production Server

3-18

    {

      for (int j=0; j<3; j++)

      {

        mpsIndex subs[] = {i, j};

        mpsIndex id = mpsCalcSingleSubscript(outVal[0], 2, subs);

        std::cout << out[id] << "\t";

      }

      std::cout << std::endl;

    }

  }

  else

  {

    mpsErrorInfo error;

    mpsruntime->getLastErrorInfo(context, &error);

    std::cout << "Error: " << error.message << std::endl;

    switch(error.type)

    {

    case MPS_HTTP_ERROR_INFO:

      std::cout << "HTTP: " 

          << error.details.http.responseCode 

          << ": " << error.details.http.responseMessage

          << std::endl;

    case MPS_MATLAB_ERROR_INFO:

      std::cout << "MATLAB: " << error.details.matlab.identifier 

          << std::endl;

      std::cout << error.details.matlab.message << std::endl;

    case MPS_GENERIC_ERROR_INFO:

      std::cout << "Generic: " 

          << error.details.general.genericErrorMsg 

          << std::endl;

    }

    mpsruntime->destroyLastErrorInfo(&error);

  }

  for (int i=0; i<numIn; i++)

    mpsDestroyArray(inVal[i]);

  delete[] inVal;

  for (int i=0; i<numOut; i++)

    mpsDestroyArray(outVal[i]);

  delete[] outVal;

  mpsruntime->destroyConfig(config);

  mpsruntime->destroyContext(context);

  mpsTerminate();

}

18 Compile the application.

To compile your client code, the compiler needs access to client.h. This header file
is stored in matlabroot/toolbox/compiler_sdk/mps_client/c/include/
mps/.

To link your application, the linker needs access to the following files stored in
matlabroot/toolbox/compiler_sdk/mps_client/c/:



 Create a C++ Client

3-19

Files Required for Linking

Windows UNIX/Linux Mac OS X

$arch\lib

\mpsclient.lib

$arch/lib/

libprotobuf.so

$arch/lib/

libprotobuf.dylib

  $arch/lib/libcurl.so $arch/lib/

libcurl.dylib

  $arch/lib/

libmwmpsclient.so

$arch/lib/

libmwmpsclient.dylib

  $arch/lib/

libmwcpp11compat.so

 

19 Run the application.

To run your application, add the following files stored in matlabroot/toolbox/
compiler_sdk/mps_client/c/ to the application’s path:

Files Required for Running

Windows UNIX/Linux Mac OS X

$arch\lib

\mpsclient.dll

$arch/lib/

libprotobuf.so

$arch/lib/

libprotobuf.dylib

$arch\lib

\libprotobuf.dll

$arch/lib/libcurl.so $arch/lib/

libcurl.dylib

$arch\lib

\libcurl.dll

$arch/lib/

libmwmpsclient.so

$arch/lib/

libmwmpsclient.dylib

  $arch/lib/

libmwcpp11compat.so

 

The client invokes addmatrix function on the server instance and returns the
following matrix at the console:

5.0 7.0 9.0

9.0 7.0 5.0



3 Using MATLAB Production Server

3-20

Create a Python Client

This example shows how to write a MATLAB Production Server client using the
Python client API. The client application calls the addmatrix function you compiled in
“Create a Deployable Archive for MATLAB Production Server” and deployed in “Share a
Deployable Archive on the Server Instance”.

Create a Python MATLAB Production Server client application:

1 Copy the contents of the matlabroot\toolbox\compiler_sdk\mps_clients
\python folder to your development environment.

2 Open a command line,
3 Change directories into the folder where you copied the MATLAB Production Server

Python client.
4 Run the following command.

python setup.py install

5 Start the Python command line interpreter.
6 Enter the following import statements at the Python command prompt.

import matlab

from production_server import client

7 Open the connection to the MATLAB Production Server instance and initialize the
client runtime.

client_obj = client.MWHttpClient("http://localhost:9910")

8 Create the MATLAB data to input to the function.

a1 = matlab.double([[1,2,3],[3,2,1]])

a2 = matlab.double([[4,5,6],[6,5,4]])

9 Call the deployed MATLAB function.

You must know the following:

• Name of the deployed archive
• Name of the function

client_obj.addmatrix.addmatrix(a1,a2)

matlab.double([[5.0,7.0,9.0],[9.0,7.0,5.0]])



 Create a Python Client

3-21

The syntax for invoking a function is
client.archiveName.functionName(arg1, arg2, ..,

[nargout=numOutArgs]).
10 Close the client connection.

client_obj.close()




